Business PreCalculus MATH 1643 Section 004, Spring 2014 Lesson 14: Properties of Functions

We will study the behavior of a function according to the changes of the variable. Let f be a function and let x and z be any two numbers in an open **interval** (a, b) **contained in the domain of** f.

Definition 1. Increasing Function: The function f is called an increasing function on (a,b) if x < z implies f(x) < f(z).

Definition 2. Decreasing Function: The function f is called a decreasing function on (a,b) if x < z implies f(x) > f(z).

Example 1. The graph of the function $f(x) = x^2$ is given by

which is increasing on the interval $(0,\infty)$ and decreasing on the interval $(-\infty,0)$.

Definition 3. <u>Constant Function</u>: The function f is called a constant function on (a,b) if x < z implies f(x) = f(z).

Definition 4. Even Function: A function f is called an even function if for each x in the domain of f, -x is also in the domain of f and f(-x) = f(x). Note that the graph of an even function is symmetric with respect to the y-axis.

Example 2. The function $f(x) = x^2$ is an even function because

$$f(-x) = (-x)^2 \qquad Replace \ x \ with \ -x.$$
$$= x^2$$
$$= f(x)$$

Definition 5. <u>Odd Function</u>: A function f is called an odd function if for each x in the domain of f, -x is also in the domain of f and f(-x) = -f(x). Note that the graph of an odd function is symmetric with respect to the origin.

Example 3. The function $f(x) = x^3$ is an odd function because

$$f(-x) = (-x)^3 \qquad Replace \ x \ with \ -x.$$
$$= -x^3$$
$$= -f(x)$$

Its graph is given by

Definition 6. Average Rate of Change of a Function: The average rate of change of f(x) as x varies from a to b is defined by

$$\frac{f(b) - f(a)}{b - a}$$

Example 4. Find the average rate of change of $f(x) = 2 - 3x^2$ as x changes from 1 to 3.

Solution:

$$f(1) = 2 - 3(1)^2 = -1$$

$$f(3) = 2 - 3(3)^2 = -25$$

Then

$$\frac{f(b) - f(a)}{b - a} = \frac{-25 - (-1)}{3 - 1} = -12.$$

Definition 7. Difference Quotient For a function f, the difference quotient is defined by

$$\frac{f(x+h) - f(x)}{h}$$

Example 5. Let $f(x) = 2 - 3x^2$, find its difference quotient. Solution: $f(x) = 2 - 3x^2$

$$f(x+h) = 2 - 3(x+h)^2$$

= 2 - 3(x² + 2xh + h²)
= 2 - 3x² - 6xh - 3h²

Then

$$\frac{f(x+h) - f(x)}{h} = \frac{(2 - 3x^2 - 6xh - 3h^2) - (2 - 3x^2)}{h}$$
$$= \frac{2 - 3x^2 - 6xh - 3h^2 - 2 + 3x^2}{h}$$
$$= \frac{-6xh - 3h^2}{h}$$
$$= \frac{h(-6x - 3h)}{h}$$
$$= -6x - 3h$$